
Near Field Communication
Near-field communication (NFC) is a set of communication protocols that enable two electronic devices, one of which is usually a portable device such as a smartphone, to establish communication by bringing them within 4 cm (1.6 in) of each other. NFC devices are used in contactless payment systems, similar to those used in credit cards and electronic ticket smartcards and allow mobile payment to replace/supplement these systems. NFC is used for social networking, for sharing contacts, photos, videos or files.
NFC-enabled devices can act as electronic identity documents and keycards. NFC offers a low-speed connection with simple setup that can be used to bootstrap more capable wireless connections.
NFC-enabled portable devices can be provided with application software, for example to read electronic tags or make payments when connected to an NFC-compliant apparatus. Earlier close-range communication used technology that was proprietary to the manufacturer, for applications such as stock ticket, access control and payment readers.
Like other "proximity card" technologies, NFC employs electromagnetic induction between two loop antennas when NFC-enabled devices—for example a smartphone and a printer—exchange information, operating within the globally available unlicensed radio frequency ISM band of 13.56 MHz on ISO/IEC 18000-3 air interface at rates ranging from 106 to 424 kbit/s.
Each full NFC device can work in three modes:
NFC card emulation—enables NFC-enabled devices such as smartphones to act like smart cards, allowing users to perform transactions such as payment or ticketing.
NFC reader/writer—enables NFC-enabled devices to read information stored on inexpensive NFC tags embedded in labels or smart posters.
NFC peer-to-peer—enables two NFC-enabled devices to communicate with each other to exchange information in an adhoc fashion.
NFC tags are passive data stores which can be read, and under some circumstances written to, by an NFC device. They typically contain data (as of 2015 between 96 and 8,192 bytes) and are read-only in normal use, but may be rewritable. Applications include secure personal data storage (e.g. debit or credit card information, loyalty program data, personal identification numbers (PINs), contacts). NFC tags can be custom-encoded by their manufacturers or use the industry specifications. The standards were provided by the NFC Forum.
NFC is a set of short-range wireless technologies, typically requiring a separation of 10 cm or less. NFC operates at 13.56 MHz on ISO/IEC 18000-3 air interface and at rates ranging from 106 kbit/s to 424 kbit/s. NFC always involves an initiator and a target; the initiator actively generates an RF field that can power a passive target. This enables NFC targets to take very simple form factors such as unpowered tags, stickers, key fobs, or cards. NFC peer-to-peer communication is possible, provided both devices are powered.
NFC tags contain data and are typically read-only, but may be writeable. They can be custom-encoded by their manufacturers or use NFC Forum specifications. The tags can securely store personal data such as debit and credit card information, loyalty program data, PINs and networking contacts, among other information. The NFC Forum defines four types of tags that provide different communication speeds and capabilities in terms of configurability, memory, security, data retention and write endurance. Tags currently offer between 96 and 4,096 bytes of memory.
As with proximity card technology, near-field communication uses magnetic induction between two loop antennas located within each other's near field, effectively forming an air-core transformer. It operates within the globally available and unlicensed radio frequency ISM band of 13.56 MHz. Most of the RF energy is concentrated in the allowed ±7 kHz bandwidth range, but the full spectral envelope may be as wide as 1.8 MHz when using ASK modulation.
Theoretical working distance with compact standard antennas: up to 20 cm (practical working distance of about 10 cm).
Supported data rates: 106, 212 or 424 kbit/s (the bit rate 848 kbit/s is not compliant with the standard ISO/IEC 18092)
The two modes are:
Passive—The initiator device provides a carrier field and the target device answers by modulating the existing field. In this mode, the target device may draw its operating power from the initiator-provided electromagnetic field, thus making the target device a transponder.
Active—Both initiator and target device communicate by alternately generating their own fields. A device deactivates its RF field while it is waiting for data. In this mode, both devices typically have power supplies.